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CONTEXT

This document describes an early opportunity

space from which we believe one or more funding
programmes can emerge. We've sketched out some
of our early thinking to spark your interest, and invite
you to imagine relevant potential programmes with
us, or suggest new directions. We'll publish updated
versions of this document as our thinking evolves.

Sign up here to receive those updates and learn
about any funding opportunities that emerge from this
opportunity space.

An ARIA opportunity space should be:

+ important if true (i.e. could lead
to a significant new capability for
society),

+ under-explored relative to its
potential impact, and

+ ripe for new talent, perspectives,
or resources to change what's
possible.

SUMMARY

Stone, Iron, Plastic, Silicon: ages of human history are defined by materials that solve civilisational
problems and transform societies. These age-defining materials represent breakthroughs in mastery over
matter: mechanical shaping, hightemperature chemistry, polymerisation, and purification. The next age
will be defined not by a single material, but by our ability to assemble molecules into bespoke solutions for

today's great challenges and finally unlock sustainable abundance.

BELIEFS

The core beliefs that underpin/bound this area of opportunity.

1. We will assemble limited sets of available molecules into a limitless range of functionality, without cost

to planetary health.

2. Programmable polymers will construct materials, from the nanoscale to the macroscale, with structures
that deliver tailored performance with unprecedented accuracy.

3. Ubiquitous clean energy will unlock a new manufacturing paradigm and, in turn, be catalysed by it:
cost-competitive, precise performance arising from structure (vs. composition) and stochastic (vs.

deterministic) assembly.

4. To unlock ubiquitous manufacturing, we'll need a new biotic-abiotic tech stack that lets us
programmably assemble matter like software - creating resilient societies, unleashing innovation at
scale, and shrinking labto-market cycles from decades to days.
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OBSERVATIONS

Some signposts as fo why we see this area as important, under-explored, and ripe.

There is a pattern to historical progress: scarcity - new manufacturing »> abundance with unforeseen costs.

A century ago, limited by natural resources, we chemically engineered synthetic materials that underpin modern food, health,
transport and entire built environments. Our inability to costcompetitively recreate the elegance of nature’s production has led to
a polluting manufacturing paradigm of single-use materials.
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To increase performance characteristics (strength, conductivity,
hydrophobicity etc.), humans use rare and toxic additives.

In contrast, nature programs polymers to assemble information-
dense architectures from the nano-scale to the macro-scale.
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Existing manufacturing is centralised, large-scale, bespoke for specific material classes and inflexible. This contributes to our
perennial materials scale-up problem: a historical 50 year gap from lab discovery to productisation.
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Our next step is to formulate a programme within this opportunity space that will direct funding across research
disciplines and institutions toward a focused objective. In order to ensure we select the right first challenge, we
want to hear from you.

Complete this form to provide feedback on the opportunity space and inform the development of our
programme thesis - we will read anything you send.
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